
J .  Fluid Mech. (1967), vol. 29, part 1, p p .  165-175 

Printed in Great Britain 

165 

Shear layers in a rotating fluid 

By D. JAMES BAKER 
Pierce Hall, Harvard University 

(Received 19 September 1966) 

A homogeneous fluid of viscosity v is confined between two co-axial disks (vertical 
separation H )  which rotate relative to a rotating system (angular velocity Q). 
The resulting velocity field is studied for values of the parameter v/2QH2 in the 
range 1.6 x 10-2 to 1.8 x The Rossby number, defined as the ratio of the 
relative angular velocity of the disks to the angular velocity of the system, 
ranged from 0.038 to 0.0041. The dependence of the resulting velocity field 
(interior and boundary-layer flow) on geometrical parameters, imposed surface 
and bottom velocities, and a, is in good agreement with the calculations of 
Stewartson and Carrier. In  particular, when the two disks rotate with the same 
angular velocity, the width of the vertical shear layer at the edge of the disks is 
found to be proportional to Q-0.25*0.02. When the disks rotate in opposite senses, 
a shear layer in the vertical velocity is observed which transports fluid from one 
disk to the other and whose width is proportional to Q-0.40*010. The magnitude 
and shape of the observed vertical velocity is in fair agreement with a numerical 
integration of the theoretical results. 

1. Introduction 
The velocity field induced in a fluid confined between two coaxial rotating 

disks of finite radius and placed in a rotating system provides a simple example 
for both experimental and theoretical study of free shear layers. These shear 
layers, which occur at the edge of the disks, are physically required to effect the 
change in angular velocity of the main body of fluid and to balance the outflow 
from the boundary layer on one disk with the inflow to the boundary layer on the 
other. Stewartson (1957) has considered the linearized problem in detail, with the 
assumption 6 = v/2QH2 < 1 (v  is the viscosity of the fluid, H the vertical separa- 
tion of the plates, and Q the angular velocity of the system) and obtained for- 
mulas for the vertical and horizontal velocities in these layers. The problem 
separates into two parts: a symmetric case, in which the two disks rotate at the 
same angular velocity, and an antisymmetric case, in which the disks rotate with 
opposite angular velocities. In  the symmetric case, a boundary layer of thickness 
O ( [ E ] ~ )  is necessary to effect the required change in the angular velocity of the 
main body of fluid, and a recirculation of fluid occurs, closed by a layer of thick- 
ness O( [el"). In  the antisymmetric case, no O( 1 )  change in the angular velocity 
of the main body of fluid is necessary. However, a shear layer in the vertical 
velocity occurs which transfers fluid from the Ekman layer on one disk to the 
Ekman layer on the other. This layer has a width O( [el*) and the vertical veloci- 
ties in it are O([s]9. 
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In this paper the results of measurements which have been carried out with the 
above simple geometry are presented. These results verify the predictions of 
Stewartson. Calculations of the flow field for this particular geometry are also 
presented as computed by the methods of Carrier (1967). The experiments were 
carried out for values of the parameter E = v/2QH2 ranging from 1.63 x 10-2 to 
1.76 x the Rossby number, defined as the ratio of the relative angular 
velocity of the disks to the angular velocity of the system, ranged from 0.038 to 
0.004 1. 

2. Theoretical calculations 
We consider the problem of a fluid contained in a rotating system in the con- 

figuration of figure 1. The upper plate rotates with angular velocity !2 + w ,  the 
lower plate with Q f w ,  where (r) < Q (the plus sign denotes the ‘symmetric ’ case, 

FIGURE 1. Flow configuration indicating co-ordinate system, horizontal, and vertical 
boundary layer regions. E = v/2RH2,  where H is the separation of the plates. 

the minus sign the ‘antisymmetric’ case). Ekman layers near x = 5 4 will 
characterize the flow in that region. However, our interest here is in the interior 
flow, away fi-om these Ekman layers, and we shall consider only axially sym- 
metric flows. All non-linear effects are ignored in this calculation. Although most 
of the results obtained here do not differ from those obtained by Stewartson 
(1957), the method of Carrier (1965, 1967) which replaces the Ekman layers by a 
boundary condition on the interior flow is summarized here. The reader is referred 
to these papers for a complete discussion of the assumptions and calculations for 
this type of problem. Assuming boundary-layer character for the flow, and ignor- 
ing terms to order €4, we obtain for the governing equations of motion: 
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where 

and we define 

and we have non-dimensionalized by the vertical separation of the plates H ;  a,nd 
velocity V,, the appropriate V, to be chosen later. (A separate non-dimensionaliza- 
tion of r and z leads to the same results; primes denote dimensional variables.) 

The boundary conditions are 

( 2 . 2 )  i V(7’ +&) = v+, V(7,  -4) = v-, 
$(.yl’ +a, = I479 - a) = 0, 

~ A 7 ,  +Q) = $AT, -4) = 0. 

In the region far from these vertical cylindrical layers (whose width is not 
greater than d) we may describe the fluid by the following : 

v7(7,4 = V(7) +FA% (2- 4)/& +&2(7’ ( Z + Q ) / 4 4 ’  
$(% 4 = @(7) + G l h ’  ( z  - *)I44 + Q2(% (2 + w44. 

To order &, we find that the solutions 4 and Gi are of boundary-layer type; 
the application of the boundary conditions (2 .2 )  implies that 

V ( 7 )  = V + ( 7 )  + V-(r)l, 
@(7) = - i.J(m[v+(T) - W 7 ) I -  

Thus the interior flow is characterized by an azimuthal flow whose magnitude is 
the average of the imposed velocities at  the upper and lower surfaces. 

The boundary conditions ( 2 . 2 )  yield boundary conditions on the interior flow 
(at the edge of the Ekman layers): 

and 

The velocity discontinuity at the edge of the rotating disk will be represented by 
the appropriate step-function: (the disks are of radius R) 

v( - 4’7) - V-(7)  - J ( 2 / E ) [ $ (  - 4,s)l = 0, 

v( + 4’7) - V+(7)  + 4 ( 2 / 4 [ $ (  + 4,711 = 0. 

The boundary conditions then become : 

antisymmetric: v( f $, 7) = T 4 ( 2 / ~ ) [ $ (  -t 4, q] -t S ( X ) ,  

symmetric: v( +_ 4,~) = T 4 ( 2 / ~ ) [ $ (  & 4, 7)] + X ( X ) .  

The use of Fourier transforms yields a convenient solution: let 
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The equations and boundary conditions imply that 

and 

The superscript (a) stands for antisymmetric, (8) for symmetric solution. The 
quantities da), dS), $(s) are found by the usualinversion formula; for example, 

All of these integrals can be evaluated as 2 ~ i  times the sum of the appropriate 
residues (those in the upper half plane for x > 0, the negative of those in the lower 
half plane for x < 0). Explicit formulas for w(") and ds) are obtained here for com- 
parison with experiment. In  obtaining these approximate formulas for ,(a) and 
dS), the fact that all the poles of the integrand lie close to either f i J2/e or the 
roots of cosh (eE3/Z) or sinh (eg3/Z) is used. The explicit representation of these 
two flow fields (in this approximation) follow: 

These formulas indicate a zonal velocity change in a layer of width O(&);  the 
vertical velocity, of magnitude d, has a characteristic width of €4. These formulas 
are valid to O ( d ) ;  however, the measurements of vertical velocity were carried 
out with an e such that E* is not negligible. In  order to facilitate comparison with 
experiment a t  this 6, the inversion integrals were evaluated by numerical integra- 
tion. The results are presented in $3. 

3. Experimental results 
3.1. Experimental arrangement 

The experimental arrangement is shown in figure 2 .  The fluid is confined in a 
disk-shaped region of height 1.27 em bounded above and below by coaxial disks 
of radius 12.05 em (free to rotate relative to the rotating system) and two closely 
fitting outer rings (inner radius 12*05cm, outer radius 17.14cm) which are 
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stationary with respect to the rotating system. The two disks may rotate in- 
dependently. The entire system is encased in an outer cylinder of lucite, and is 
placed on a rotating table whose axis is parallel to the axis of the disks. The use of 

FIGURE 2. Experimental arrangement, side view (cross-section). 

FIGURE 3. Experimental arrangement, top view. 
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seals near the edge of the rotating disks would preclude the study of the flow field 
there; a sliding fit is necessary. The whole cylinder must then be filled with fluid; 
the working fluid is between the disks and the outer rings. The fluid exhibited no 
tendency to leak out along the edges of the rotating disks. The zonal velocity 
structure was photographed with the camera held vertically; the vertical velocity 
profiles were photographed from the side through a lucite-water prism in order 
to minimize distortion (see figure 3). 

3.2. Measurement of velocities 
The zonal velocity change is most easily measured in the symmetric case, as the 
vertical shear effects an O( 1) change in the zonal velocity. Vertical velocities, on 
the other hand, are most easily measured in the antisymmetric case where the 
interior zonal velocity is zero (to order €4): the undesired effects of horizontal ad- 
vection of the fluid flow markers are absent. Therefore, boundary layer measure- 
ments were made of v(s) and w(@. 

The validity of the above linear calculations and the avoidance of shear layer 
instabilities call for relative velocities of 0.1 cm/sec or smaller. These small veloci- 
ties, to be measured relative to the rotating system, necessitated the development 
of a neutrally buoyant marker for the fluid flow. 

The following method has proved successful (Baker 1966): a fine wire is placed 
in a solution of the pH indicator Thymol Blue which has been titrated to the end- 
point. A second electrode is placed in the fluid and an electric current is allowed 
to flow in the resulting circuit. As the pH of the solution near the wire changes, the 
colour of the solution there also changes; this coloured fluid will float away from 
the wire with the moving fluid. As the indicator is at all times in solution, the 
coloured fluid is precisely neutrally buoyant and thus forms a useful marker for 
the measurement of slow relative velocities in rotating systems. 

In this particular arrangement, four 0.001 in. platinum wires were placed in the 
fluid as shown in figure 2. These wires are attached to the outer cylinder, thus 
remaining at rest relative to the rotating system. The second electrode is a copper 
plate around the outside of the cylinder. A current of 100mA was necessary to 
obtain a line of coloured fluid sufficiently dark to photograph. All photographs 
were taken with a Nikon F 35 mm camera mounted on the rotating table. The 
system was photographed a t  a given time after the circuit voltage was pulsed; 
the resulting displacement of the coloured line of fluid is then corrected to velocity 
by dividing by time. (The error introduced by this averaging procedure is small 
compared to the other uncertainties in the experiment.) Zonal velocities were 
photographed 15 see after the voltage pulse; vertical velocities 12.5 see. 

3.3. Experimental errors 

The primary uncertainties in these measurements arise in the reduction of the 
data from the photographs to the actual velocity profiles. The edge of the ink 
profile in the enlarged photographs is not sharp; an uncertainty of 5 yo is thus 
introduced into the velocity profile. Variations in the time between activating 
the dye circuit and photographing the line of dye introduced an uncertainty of 
3.8 yo. Other uncertainties of measurement are less than these and are neglected in 
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comparison. Note that the errors in the vertical velocity measurements are much 
larger than in the zonal velocity measurements; this difference occurs because 
the width of the line of dye is comparable to the distance moved by the centre of 
the line. An estimate of the errors due to neglect of curvature and non-linear 
terms in the equations of motion indicated that these terms should be less than 
5 % of the terms retained. 

3.4. Experimentul results 

Thee  different ratios of upper disk rotation rate to lower disk rotation rate were 
used (all measured relative to the rotating system): (u)  the two disks had the 
same angular velocity, 0*0145rad/sec; ( b )  the upper disk had an angular velocity 
of O-O145rad/sec and the lower disk did not rotate; and ( c )  the upper disk had 
angular velocity O-0145rad/sec7 the lower disk - O*0145rad/sec. Case (a )  is the 
‘symmetric’ case, case (b)  is mixed, and case (c) is ‘antisymmetric’. 

For each of these three arrangements, velocity measurements were carried out 
for values of the main rotation rate ranging over a factor of 10: from 0.38 to 3-51 
rad/sec. We separate the measurements into two parts: interior flow and bound- 
ary layer (vertical shear layer) flow. (Note that for this experiment, placement 
of the wires precluded measurements in the Ekman layers near the upper and 
lower edges of the disks. The Ekman layers for these rotation rates are approxi- 
mately 1 mm thick.) 

Interior flow 
This region is that part of the fluid between the two Ekman layers and far from 

the vertical shear layers. The theory predicts that the velocity in this region 
should be independent of z, the direction along the axis of rotation, and in each 
case should be the average of the imposed surface velocities. The results are 
depicted in table 1. 

Predicted 
Observed 

V+ v- (V++ V-) /2Vo  exp 1 7 / 8 0  

Case ( a )  Vo Vo  1 1.03 f 0.06 

Case ( b )  Vo  0 0.5 0.51 f 0.06 

Case (c) Vo - Vo 0 0.00 f 0.06 

TABLE 1. 

Excellent agreement within experimental error between the calculated and 
observed ratios for this interior (geostrophic) flow is exhibited here. 

Boundary-layer flow 
For case (a) ,  the symmetric case, the zonal velocity near the edge of the disks 

was measured as a function of x and Q. For the case (c ) ,  the antisymmetric case, 
the horizontal velocities are zero, and the vertical velocity profile can be measured 
as a function of x ,  z and Q. 
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Photographs of the flow were obtained a t  nineteen different values of the main 
rotation rate, Q, and a typical result is depicted in figure 4. The profile (corrected 
for radial variation of the interior flow) agrees within experimental error with the 
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FIGURE 4. Comparison of theory and experiment for azimuthal flow near edge of disks; 
symmetric case. Here E = 1.31 x = 2.36 see-l. Velocity non-dimensionalized by 
V ,  = w R ;  R = radius of disks. -, experiment ; - - -, theory ; f , experimental uncertainty. 
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FIGURE 5. Width of azimuthal boundary layer as a function of main rotation rate R. Prr- 
dieted slope : - 0.25; observed slope: - 0.25 f 0-02. 0, experimental points; -, least 
squares fit to data. Slope = - 0.25 & 0.02; x ,  typical experimental uncertainty. 
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FIGURE 6. Comparison of theory and experiment for vertical velocity structure near edge 
of disks; antisymmetric case. Here E = 2.20 x C2 = 1.41 sec-I. -, experimental 
profile; - - -, theory; 3, experimental uncertainty. 
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FIGURE 7. Width of vertical velocity profile as a function of main rotation rate Q. Pre- 
dicted slope -0.33; observed slope -0-40+0.10. -, least squares fit line slope = 0.40 
- -t 0.10; 3 ,  typical experimental uncertainty. 
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theoretical computations. In order to determine the dependence of the width of 
the experimental profile on the basic rotation rate, log v was plotted as a function 
of radius, and aleast squares line was fitted to the resulting points yieldinga slopes. 
A plot of l o g 8  against log !2 (figure 5) yields the R-dependence of the profile 
width. A least squares fit to these points yields a slope of - 0.25 ? 0-02, which is 
in excellent agreement with the theoretical prediction of -0.25. The E' 3 struc- 
ture predicted by the theory is too small in magnitude t o  be observable in this 
experiment. 
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FIGURE 8. Magnitude of vertical velocity as a function of z at x = 0. 6, R same as figure 6. 
- - -, theory; -0-, experimenta data; 5 ,  experimental uncertainty. 

A typical vertical velocity profile is depicted in figure 6. The experimental 
errors are somewhat larger in this case, due to the slower velocities, but the 
general shape of the profile is in good agreement with the theoretical profile 
obtained by a numerical integration of the inversion integral. This procedure was 
necessary in order to obtain the result correct to order O(E*). Nineteen profiles 
were thus obtained. In  order to determine the dependence of the width of this 
profile on the main rotation rate, the logarithm of the distance between the points 
where the velocity was zero was plotted as a function of the logarithm of the main 
rotation rate. The slope of the resulting line determines the Q-dependence of the 
width. The result is shown in figure 7.  The uncertainties are larger in this case 
because an average for each profile is not obtainable. However, the result 
( Q-0.40*0.10) is consistent with the theoretical result of Q-0'33. As can be seen from 
(2.4), the vertical velocity is a slowly varying function of x. As the vertical velocity 
was determined at four different levels in the fluid, this x-dependence could be 
checked. Figure 8 depicts the theoretical results for w (at x = 0 )  as a function of x .  
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The four experimental points are plotted on the same graph, and the z-depend- 
ence correlates closely with the theory. The predicted magnitude of the vertical 
velocity is 30 yo higher than the observed magnitude. This discrepancy probably 
lies both in the approximate treatment of the linear theory and the neglect of 
non-linear terms in the calculation of this small [O(ei)] velocity. The calculations 
of zonal velocities yield magnitudes O( 1) and do not exhibit such a discrepancy. 
Figures 9 and 10 are actual photographs of the dye lines, exhibiting the features 
discussed. 
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FICIJRE 9. Vertical velocity in free shear layer at edge of disks; antisymmetric case. Dye 
lines photographed 12.5 sec after voltage pulse. Main rotation rate Cl = 1-41 sec-I. The 
four lines in lower half of picture demonstratc actual flow; reflexions can bc soon abovc. 

FIGURE 10. Boundary layor in azimut,hal velocity at edge of disks. Dye lines photographed 
1.5 sec after voltage pulse. Main rotation rate R = 2.36 sec-l. 
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